Question	Answer	Marks	Guidance
1 (a)	both correct charges of ions (calcium 2+ and nitrogen 3–);		Charges can be shown anywhere I missing symbols for nitrogen R wrong symbol of nitrogen anywhere
	M2 8 electrons around nitrogen (can be 3 dots and 5 crosses or 5 crosses and 3 dots or all dots or all crosses, but reject any other combinations of dots and crosses);		
	M3 Two electrons on the inner shell on any nitride ions/nitrogen atom: allow 2x or 2o once;		 A if electron configuration of nitride is given as 2,8 or N is given as 2,5 I any missing inner shells as long as one is present
		3	<i>General guidance:</i> I electron configuration/symbol of calcium ion I formulae/stoichiometry Covalent can score only M3
(b)(i)	/repeated/pattern/framework/periodic/ordered/alternating/ organised;		Ilayers
	(of)particles/atoms/molecules/ions/cations/anions;	2	A ionic/molecular/atomic I arrangement/bonding/properties
(b)(ii)	(so that ionic) charges balance or cancel/charge = 0/no charge/number of positive = number of negative charges/charge is neutral or neutralised;		
	M2 3(-) \times 2 = 2(+) \times 3;	2	A 6(+) = 6(-) I statements about electron transfer/valency/ ox state unless valency is referring to ionic charges e.g. valencies 3+ and 2- can get credit if used properly Ratio of ions is 3:2 therefore ratio of charges is 2:3 scores 2

Question	Answer	Marks	Guidance
(c)	it (refers to Ca)/Calcium/Ca (atom) loses/gives/donates electrons/e/e ;		A half-equation with electrons on right-hand side R calcium ion/Ca ²⁺
	(these are) gained by nitrogen/N/N $_2$;		A half-equation with electrons on left-hand side R nitride ion/N ³ I numbers of electrons/charges on ions/oxidation state/valency if mentioned R reference to oxygen/hydrogen if there is a suggestion that oxygen/hydrogen are involved in the reaction I reference to oxygen/hydrogen if in general statement e.g. oxidation is gain of oxygen
	nitrogen/N/N ₂ is reduced so calcium/Ca is the reducing agent (these two statements could be split i.e. not in same sentence) OR reducing agents are electron donors/give/lose electrons OR calcium/Ca is oxidised (by electron loss) therefore calcium is the reducing agent (these two statements could be split i.e. not in same sentence);	3	Electrons/e/e move from calcium to nitrogen get marks 1 and 2 A calcium/Ca/it is a reductant or calcium/Ca/ it reduces

2	(a	(making) fertilisers/nitric acid/nylon/explosives/urea
		(for) cleaning products (allow oven cleaner)/refrigeration

(b) equilibrium/reversible

(c)	(nit	nitrogen)air/atmosphere					
	(hydrogen) methane/water/steam/alkane/named alkane/hydrocarbon/crude oil or petroleum/natural gas						
(d)	iror		[1]				
(e)	(i)	rate increases/faster					
		More (effective) collisions	[1]				
	(ii)	yield decreases	[1]				
		(forward reaction) exothermic/reverse reaction endothermic/high temp favours endothermic reaction	[1]				
(f)	(i)	yield increases	[1]				
		less / fewer molecules or moles or volume on RHS ORA / high pressure favours reaction which produces fewer molecules or moles or volume	[1]				
	(ii)	particles/molecules closer/more particles per unit area or volume/more molecules per unit area or volume/more concentration/particles have less space between them and more collisions	[1]				
	(iii)	safety issues/higher cost	[1]				
(g)	3 b	ond pairs between N & H	[1]				
	Lone pair on N						
(h)	(proton/H⁺ acceptor					
	(ii)	$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$	[2]				
		Formula of (NH ₄) ₂ SO ₄ (1) The rest (1)					
			[Total:18]				

3	(a	sof	t because weak forces between layers/sheets/rows	[1]	
		laye	ers can slip/slide	[1]	
		od conductor because electrons can move/mobile	[1]		
	(b)	 it is soft: pencils or lubricant or polish good conductor: electrodes or brushes (in electric motors) 			
	(c)	(i)	every silicon atom is bonded/attached to 4 oxygen atoms or every oxygen bonded/attached to two silicon atoms	[1]	
		(ii)	Any two from: high melting point/boiling point hard colourless crystals/shiny poor/non-conductor of electricity/insulator insoluble in water	[2]	
				[Total: 8]	

4	(a	<u>Bromine</u> Physical: reddish-brown liquid or brown liquid or volatile liquid/low boiling point liquid or poor/non-conductor (of electricity) or soluble in water or soluble in organic/non-polar solvents	[1]
		Chemical: Reacts with water or reacts with iodides (in solution) or displaces iodine or reacts with alkenes/named alkene/unsaturated hydrocarbons or reacts with alkane in UV/named alkane in UV or valency/oxidation state(–)1 or forms Br or gains or shares 1 electron or combines or reacts with metals/named metal or combines or reacts with non-metals/named non-metal or oxidising agent or bleaches litmus paper/indicator paper or corrosive or forms acidic oxides	[1]
	(b)	<u>Graphite</u> Physical: (good) conductor (of electricity) or soft or lubricant or high melting point/high boiling point or grey black or black solid or slippery or greasy (to touch) or brittle/breaks when subjected to stress or insoluble in water	[1]
		Chemical: reducing agent or reduces metal oxides/named metal oxide or reacts with/burns in air/oxygen or forms an acidic oxide (CO_2) or valency/oxidation state of 2 or 4	[1]
	(c)	Manganese Physical: (good) conductor (of heat/electricity) or high melting point/high boiling point or forms coloured compounds/coloured ions or hard or strong or high density or malleable or ductile or sonorous or shiny	[1]
		Chemical: Variable or different valency/oxidation state/oxidation number or catalytic activity or forms coloured compounds/coloured ions or forms complex ions/complexes or reacts with acids or reducing agent or reacts with non-metals	[1]
			[Total: 6]

5	(a	(i)	3	[1]
		(ii)	70	[1]
	(b)	Ado	d octane (or other liquid hydrocarbon) (to soot)	[1]
		CO	ND(on addition of any solvent) filter (to remove insoluble forms of carbon)	[1]
		(all	ow to) evaporate or heat or warm or leave in sun(to get crystals of fullerene)	[1]
	(c)		graphite	[1]
		(ii)	delocalised electrons/free electrons/sea of electrons	[1]
			COND (on electrons) move/mobile/electrons flow	[1]
		(iii)	Any two from: potassium oxide potassium hydroxide potassium carbonate	[2]
			potassium hydrogencarbonate (bicarbonate)	
				[Total: 10]
6	(a)) A :	and E need both (1)	
	(b)) D	(1)	[1]
	(c)) С	(1)	[1]
	(d))В	(1)	[1]
	(e)) F ((1)	[1]
	(f)	E	(1)	[1]
	(g)) C	(1)	[1]
				[Total: 7]

7	(a	(i)	add carbon / animal charcoal filter	[1] [1]
			OR	
			repeat experiment without indicator using same quantity / volume of acid	[1] [1]
		(ii)	add magnesium metal / carbonate / oxide / hydroxide to (hot) (hydrochloric) acid	[1]
			cond: until in excess or no more dissolves or reacts	[1]
			cond: filter (to remove unreacted solid)	[1]
	(b)		nber of moles of HC l = 0.020 x 2.20 = 0.044 nber of moles of LiOH = 0.044	[1]
		cor aco	the contraction of LiOH = $0.044/0.025 = 1.769 \text{ (mol/dm}^3\text{)}$ cept 1.75 to 1.77 need 2 dp rect answer scores = 2	[1
	(c)	ma per	LiC <i>l</i> .2H ₂ O) ss of one mole = 78.5 reentage water = 36 / 78.5 x 100 9 so is LiC <i>l</i> .2H ₂ O	[1] [1] [1

only award the marks if you can follow the reasoning and it gives 45.9% of water

allow: max 2 for applying a correct method to another hydrate, [1] for the method and [1] for

[Total: 10]

note: if correct option given mark this and ignore the rest of the response

the correct value, working essential